Sequential Ice Hockey Events Generation using Generative Adversarial Network

Md Fahim Sikder

md.fahim.sikder@liu.se Reasoning and Learning Group (ReaL), Department of Computer and Information Science (IDA), Linköping University



#### Overview

- 1. Contest Problem Statement:
  - Generate / Find pattern of events that leads to a particular outcome.
- 2. Swedish Hockey League data: 20 matches data provided by Sportlogiq



## Motivation

- 1. Analytic can be helpful for the team level management for devise tactics
- 2. Such as: we can learn what steps to take to for a particular outcome
  - Goal, successful zone entry, analyze the whole game
  - Determine player performance
  - In our case, sequential events leads to goal and position



# Solution

- 1. Learn a generative model (TimeGAN<sup>1</sup>) to capture the pattern of original data
- 2. Generated synthetic data using the generative model
- 3. Showed the sequence of events that leads to a "goal"
- 4. Plotted the coordinates of the events in a hockey  $rink^2$



<sup>&</sup>lt;sup>1</sup>Time Series Generative Adversarial Network, J Yoon, NeurIPS, 2019 <sup>2</sup>https://github.com/the-bucketless/hockey\_rink

## Approach

- 1. Why Generative model?
  - Model learns internal pattern of the original data
  - Generated data follows the same distributions as the original data
  - Sometimes size of original data can be small and it might be difficult for other ML method to learn patterns
  - Unlimited sampling!
- 2. Training Approach:





### TimeGAN



Losses used in TimeGAN: 1. Reconstruction Loss 2. Supervised Loss 3. Unsupervised Loss

#### Figure: TimeGAN Architecture



# Evaluation

Beside TimeGAN, we have also implemented another two GAN architectures (LSGAN<sup>3</sup>) and compared their results with TimeGAN.

We have evaluated the synthetic data using the following:

- 1. Principal Component Analysis (PCA) plot
- 2. Sequence Prediction tasks: Given 23 sequence predict the next one.



<sup>&</sup>lt;sup>3</sup>Least Squares Generative Adversarial Networks, X. Mao, ICCV, 2017

## Evaluation





# Evaluation

Sequence prediction task, loss function were Mean Absolute Error (MAE) and Mean Squared Log Error (MRLE)

Table: Comparison of Three GAN models on sequence predicting task

| Models      | MAE       | MRLE     |
|-------------|-----------|----------|
| $TimeGAN^4$ | 0.246165  | 0.053882 |
| LSGAN-LSTM  | 0.2999977 | 0.062845 |
| LSGAN-GRU   | 0.293644  | 0.071429 |

<sup>4</sup>https://github.com/ydataai/ydata-synthetic



#### Results



(b) Synthetic vs Original (bin calc method = mean)



#### Results



|     | eventname      | xadjcoord  | yadjcoord  |
|-----|----------------|------------|------------|
| 608 | carry          | -8.187723  | 19.682789  |
| 609 | rebound        | -16.910313 | -34.843334 |
| 610 | pass           | -19.662125 | -17.326357 |
| 611 | puckprotection | -5.287961  | -31.607763 |
| 612 | offside        | 46.929260  | -13.129886 |
| 613 | goal           | 60.826790  | -30.427969 |

(b) Synthetic Goal Events

Figure: Synthetic goal plot and events



## Discussions

- 1. Idea of using generative models and synthetic data
- 2. Generalized approach (can work with goal, zone entry, etc)
- 3. This is the first work using Synthetic data on Ice Hockey (to our best knowledge)
- 4. Code for this project can be found here<sup>5</sup>



<sup>&</sup>lt;sup>5</sup>https://github.com/fahim-sikder/event-generation-ice-hockey

# How can this solution help Hockey Analytics

- 1. Sample different patterns from a single model (find pattern of goal, zone entry, etc)
- 2. Unlimited sampling!
- 3. Event plotting & heatmaps!



Thank you!

