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The problem: Intersectional Bias in Al Systems

Discrimination can manifest at intersections of multiple sensitive attributes (gender x race x ethnicity). For example: evidence
showed commercial facial recognition software gives errors of 0.8% for lighter-skinned males versus 34.7% for darker-skinned
females, while giving good performance when considering single-attributes alone [1]. Existing fairness methods address single-

attributes, thereby missing compounded discrimination.

Our Approach: Novel Two-stage Framework for Mitigating Intersectional Bias
Knowledge distillation + Modular Intersectional Loss (FPR + DP + CI + Adversarial) targeting Intersectional Groups

Key Contribution
Novel Two-Stage Framework

* Presented a knowledge distillation framework that .
transfers predictive performance from a teacher
model to a fair student model

 Ensures high utility while enabling fairness .
interventions

 Teacher focuses on accuracy; student inherits
knowledge while enforcing fairness

settings

Framework Architecture

Stage 2: Intersectional Fairness-Aware

Student Learning

Objective: Learn fair representation across intersection
groups

Stage 1: Teacher Model Training

Objective: Learn high-quality representation

Comprehensive Architecture

Modular loss functions targeting False-positive .
rate parity (FPR), Demographic parity (DP),
Conditional independence (CI)

Support both binary and multi-class classification
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Improved Performance

+52% accuracy, 61% FPR reduction,
robust model

Practical Deployment

* 2.5 — 5 X parameter compression

Experimental Results

COMPAS: FPR Across Intersectional Groups
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