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Paper

The problem: Intersectional Bias in AI Systems
Discrimination can manifest at intersections of multiple sensitive attributes (gender x race x ethnicity). For example: evidence
showed commercial facial recognition software gives errors of 0.8% for lighter-skinned males versus 34.7% for darker-skinned
females, while giving good performance when considering single-attributes alone [1]. Existing fairness methods address single-
attributes, thereby missing compounded discrimination.

Our Approach: Novel Two-stage Framework for Mitigating Intersectional Bias
Knowledge distillation + Modular Intersectional Loss (FPR + DP + CI + Adversarial) targeting Intersectional Groups

Key Contribution
Comprehensive Architecture
• Modular loss functions targeting False-positive

rate parity (FPR), Demographic parity (DP),
Conditional independence (CI)

• Support both binary and multi-class classification
settings

Improved Performance
• +52% accuracy, 61% FPR reduction,

robust model

Practical Deployment
• 2.5 – 5 x parameter compression

Novel Two-Stage Framework
• Presented a knowledge distillation framework that

transfers predictive performance from a teacher
model to a fair student model

• Ensures high utility while enabling fairness
interventions

• Teacher focuses on accuracy; student inherits
knowledge while enforcing fairness

Framework Architecture Experimental Results


