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Method
A b St r G Ct Transfusion works in two steps [2]:

The generation of high-quality, long-sequenced time-series data is essential due to its wide range of = Forward step: We add noise to the data until the
S L. : : data become pure Gaussian noise.

applications. In the past, standalone Recurrent and Convolutional Neural Network-based Generative . g, kward step: We use a Transformer-Encoder [4]
Adversarial Networks (GAN) were used to synthesize time-series data. However, they are based neural network to denoise the data and
inadequate for generating long sequences of time-series data due to limitations in the architecture. approximate the original data distribution.

Furthermore, GANs are well known for their training instability and mode collapse problem. To
address this, we propose TransFusion, a diffusion, and transformers-based generative model to
generate high-quality long-sequence time-series data. We have stretched the sequence length to

384, and generated high-quality synthetic data. To the best of our knowledge, this is the first study

———>

Forward step

that has been done with this long-sequence length. Also, we introduce two evaluation metrics to Time-series data ~ A(XeXe1) Noisy time-series
evaluate the quality of the synthetic data as well as its predictive characteristics. We evaluate

TransFusion with a wide variety of visual and empirical metrics, and TransFusion outperforms the @ ............. Xl O .@
previous state-of-the-art by a significant margin.

Introduction Our Contributions Po(XcalXo)

Research Challenges « We introduce TransFusion, a Transformer and

« How can we generate long and high-fidelity time-series diffusion based generative model, that can generate Backward step
data? long-sequenced high-fidelity time series data.

« How can we evaluate long-sequenced synthetic time- Transformer allows us to capture long-term Denoised time-series
series data? dependencies. And diffusion process overcomes the data

 How can we overcome the mode-collapse problem of mode-collapse problem. TransFusion workflow
generative models? « We propose two evaluation metrics, Long Re SUlt S

Motivation Discriminative Score (LDS) & Long Sequenced . .

, , , Predictive Score (LPS), which can distinguish < We use four benchmarking datasets (stock price,

* Long-sequenced time-series data gives more original and synthetic data and provide an overview sinusoidal wave, air-quality data, and, electricity
1nform2}t10n tha.m the short.—sequenced data. , of the synthetic data's performance over sequence consumption data).

* Most tlme—serles generative models are .Generatnfe prediction task, respectively. LDS and LPS are both * We compare the quality of generated data with four
Adversarial Networks (GAN) [1, 3] and training GAN is based on Transformers architecture, so it can capture generative models in terms of Fidelity, Diversity.
challenging as well as it prones to mode-collapse long-term dependencies. This allows the evaluation ¢ Visual Evaluation
problem. , metrics to work with long-sequenced time series data. « PCA & t-SNE Plots

 Transformer architecture can capture long-term . Empirical Evaluation
dependencies. « Fidelity: LDS, Jensen-Shannon Divergence

(JSD), a-precision [5]
PCA Result ~ PCAResult PCA Res”'tR | _ PCA Res”'tR | PCA Result . Diversity: B-recall [5]
o) %% weit e Rea o e Rea % .

" - ! S ! S i mm ; Checkmode collapse: Coverage[5]
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