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Machines and software powered by artificial intelligence are rapidly growing and making our lives z F / > _';b 7
much easier. This is possible due to the availability of a vast amount of data. Unfortunately, most of f \ l
the time, these data are not processed, and it takes a lot of resources to make it usable. On top of gl MY C — CEpo LDSS estimate
that, most of the processed datasets that are available are kept private due to various limitations. T e T e e —
One possible solution to this problem is generating synthetic data statistically like the original using K F /
generative models. Computer vision and natural language processing have seen advancement in -4 = v - N
generative models in recent years. However, little work has been done in the time-series generation : o Nie? -
domain due to its volatile nature. Furthermore, most of the data in real life is full of technical/human g g — %
biases. Applications powered using these biased data might give unfair outcomes towards various % \
demographics. So, generative models should also generate fair synthetic data. From these 2 2o
motivations, in this PhD thesis, we aim to find ways to create generative models that can generate R 2 v
Time-Series and Fair synthetic data. > -
Introduction : Eﬂ DRS(Go, Dy, N)
Research Challenges , E tesee
« RQ-1: How can we capture the temporal dynamics of : g 7 B 2 | Real Samples Generated samples Final samples
time-series using generative models? : 2 oo # from stage 2
* RQ-2: How to generate bias-free data using generative : z . | N /
models? : S Faki i:; :f;tent 7 . .
* RQ-3: How can generative models generate fair-time- : g Y Fig 3: Architecture of Bt-GAN [3]
series data? _ E e[ Generator ] g % ;
Our Contributions =2 Noie - Fii® | g
* We introduce TransFusion [1], a Transformer and . D %l E v % %
- . a 7 3
longseauenced high.fdelity tim series data. We also e J [ 2 ]
introduce two evaluation metrics called Long atent vectors,

Discriminative Score (LDS) and Long-
Sequenced Predictive Score (LPS) to evaluate
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the quality of the synthetic data as well as its | Dhoodedfar o
. . . . atent vectors
predictive characteristics [RQ-1]. )
 We present a novel formulation (FLDGMs) [2] of a "™ \ Encoder / -/ Decoder |
fair latent generative framework common for both : £ : B N
. . . . - - . p , oy
GANs and Diffusion models, which introduces the : g ; 0 i Fig 4.b: ‘Male’ as the sensitive sub-group (Generated by FLDGMs [2])
concept of syntax-agnostic, model-agnostic fair latent : & : |
R ’ E’ Non- Sensitive . (Generated Generated| | ACknOWIedgment
vectors [ Q_2]' B sensitive features ' jhon-sensitive sensitive | | | . .
« We introduce Bt-GAN [3], GAN-based fair synthetic : % : features freatures features | | | This work was funded by the Knut and Alice Wallenberg
. ot { .,' . . o o
data generation framework, specifically designed for : Z : . Foundation, the ELLIIT Excellence Center at Linkoping-
healthcare domain. We use score-based weighted :. O OSSO Lund for Information Technology (portions of this work
Samp]ing techniques to capture the Sub-group et were carried out using the AIOps/ Stellar), and TAILOR -
representations also, we present problem definition of an EU project with the aim to provide the scientific
how generative models are affected by various bias Fig 1: Architecture of FLDGMs [2] foundations for Trustworthy AI in Europe. The
[RQ-2]. computations were enabled by the Berzelius resource
provided by the Knut and Alice Wallenberg Foundation
at the National Supercomputer Centre.
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Fig 2: PCA and t-SNE plots of the real data (electricity consumption dataset, blue dots) and synthetic data (orange dots)
generated by state-of-the-arts generative models and TransFusion [1], each dots represents a sequence of time-series, if the
generative models learns the original data distribution, orange and blue dots should overlap, sequence length: 100
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