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FairX

INntroduction

 Fairness benchmarking tool
« FairX

« Data Loading and Pre-processing
« Tabular and Image dataset

 Fair Models (Benchmarking)
 Fair Generative Models Support

 Evaluation
 Synthetic Data Evaluation Support
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Background

When I say fairness, what do I mean by it?

Three types of bias-mitigation techniques:
* Pre-processing
* In-processing
= Most of the Fair Generative Models is here!
» Post-processing

Various fairness and utility metrics

It would benefit the community if everything is in one place!

Need ways to evaluate synthetic data
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Background (Contd.]

Table 1
Comparison of existing benchmarking tools with FairX over different key areas of interests: Fairness
Evaluation; Synthetic Data Evaluation; Model Explainability; and Generative Fair Model Training.

Benchmarking Fairness Evaluation Synthetic Data Explainability Generative Model

Tools Evaluation Training
Fairlearn [4] v X X X
AlF360 [5] v X v X
Jurity [14] v X X X
AEQUITAS [15] v X X X
REVISE [17] v X X X
FairBench [16] v X X X
FairX (ours) v v v v
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FairxX Overview
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Data Loading Module

« Data pre-processing and Loading
 Aids to prepare the dataset for the benchmarking as well as standalone use
« Currently available dataset
« 4 Tabular datasets including Adult Income, COMPAS, Credit-Card
« 2 Image datasets including Colored-MNIST, CelebA [1]
 Option to load custom dataset with the help of "CustomDataClass"

[1] Liu, Ziwei, et al. "Deep learning face attributes in the wild." Proceedings of the IEEE international conference on computer vision. 2015.
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Model Loading Module

 Bias-Mitigating Models
* Pre-processing
 Disparate Impact Remover [1]
* In-processing
« FairDisco [2]
 FLDGMs [3]
« TabFairGAN [4]
e Decaf [5]
» Post-processing
e On fairness & Calibration [6]

[1] Feldman, Michael, et al. "Certifying and removing disparate impact." proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. 2015.
[2] Liu, Ji, et al. "Fair representation learning: An alternative to mutual information." Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022.
L| N KOD|NG [3] Ramachandranpillai, Resmi, Md Fahim Sikder, and Fredrik Heintz. "Fair Latent Deep Generative Models (FLDGMs) for Syntax-Agnostic and Fair Synthetic Data Generation." ECAI 2023. 10S Press, 2023. 1938-1945.
. UNIVERSITY [4] Rajabi, Amirarsalan, and Ozlem Ozmen Garibay. "Tabfairgan: Fair tabular data generation with generative adversarial networks." Machine Learning and Knowledge Extraction 4.2 (2022): 488-501.
[5] Van Breugel, Boris, et al. "Decaf: Generating fair synthetic data using causally-aware generative networks." Advances in Neural Information Processing Systems 34 (2021): 22221-22233.
[6] Pleiss, Geoff, et al. "On fairness and calibration." Advances in neural information processing systems 30 (2017).
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Fvaluation Module

» Fairness Evaluation
« Demographic Parity Ratio
« Equal Opportunity Ratio
« Data Utility
« ACC, Recall
 F1-Score, AUC
» Advanced Data Utility
* a — precision, f —recall [1]
 Authenticity [1]
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[1] Alaa, Ahmed, et al. "How faithful is your synthetic data? sample-level metrics for evaluating and auditing generative models." International Conference on Machine Learning. PMLR, 2022.
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Fvaluation Module (Contd.)

 Visual Evaluation
« PCA & t-SNE
» Performance trade-off between Fairness and Accuracy of the data
» Synthetic Image Quality (only for image domain)
 Intersectional Bias representation
 Explainability Analysis
 SHAP [1]

[1] https://shap.readthedocs.io/en/latest/index.html
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Visual Evaluation

Assessing Diversity: Qualitative Comparison of Real and Synthetic Data Distributions

PCA Result t-SNE Result
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Fig: PCA and t-SNE plots of Original and Synthetic data by TabFairGAN
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Visual Evaluation (Contd.)
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Visual Evaluation (Contd.)

Feature Importance Original Data Feature Importance Synthetic Data
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Fig: Feature importance by SHAP of Original (left) and Synthetic (right) data
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Visual Evaluation (Contd.)
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Fig: Intersectional Bias plotting, Representation of ‘sex’ and ‘race’ features on the target class,
here we can see the dataset is heavily in favor of white people, dataset: Adult-Income
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FairX (Dev-0PS)

* Open Source
 https://github.com/fahim-sikder/FairX
« Python Support
* 3.8 -3.11
» Added CI/CD pipeline

* Check modules after every commit

GitHub Link
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Future Works

» Framework

* Add new models

» Add new evaluation

« Add report support

« Make a GUI interface (preferably web-based)
« Add support evaluating LLMs

» Thinking different ways to evaluate the generated content regarding Fairness!
» Push the package to pypi
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summary

» We present FairX: a fairness benchmark with the support of synthetic data
evaluation and interpretability.

 FairX is open-source and has capability to train fair generative models and
evaluate fair synthetic data.

» Works for both Tabular and Image Modalities.

« We aim to extend the framework by adding more state-of-the-art fairness
models as well as by supporting different data modalities.
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