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Abstract. Deep Generative Models (DGMs) for generating synthetic
data with properties such as quality, diversity, fidelity, and privacy is
an important research topic. Fairness is one particular aspect that has
not received the attention it deserves. One difficulty is training DGMs
with an in-process fairness objective, which can disturb the global
convergence characteristics. To address this, we propose Fair Latent
Deep Generative Models (FLDGMs) as enablers for more flexible
and stable training of fair DGMs, by first learning a syntax-agnostic,
model-agnostic fair latent representation (low dimensional) of the
data. This separates the fairness optimization and data generation
processes thereby boosting stability and optimization performance.
Moreover, data generation in the low dimensional space enhances
the accessibility of models by reducing computational demands. We
conduct extensive experiments on image and tabular domains us-
ing Generative Adversarial Networks (GANs) and Diffusion Models
(DMs) and compare them to the state-of-the-art in terms of fairness
and utility. Our proposed FLDGMs achieve superior performance in
generating high-quality, high-fidelity, and high-diversity fair synthetic
data compared to the state-of-the-art fair generative models.

1 Introduction

Deep Generative Models (DGMs) have achieved substantial progress
in learning to approximate the real data distribution as closely as
possible. In particular, Generative Adversarial Networks (GANs) [10]
and Diffusion Models (DMs) [15] are the most successful among the
generative models for generating high-dimensional data. Existing gen-
eration methods based on GANs and DMs have focused on properties
such as fidelity, quality, diversity, and privacy. Fidelity and quality
relate to how closely synthetic data captures the distribution of real
data. Diversity measures how successful they are in generating new
distributions that are covered by real data. Lastly, privacy guarantees
that synthetic data is not just a replication of real data, which is very
important in sensitive domains [37].

Synthetic data fairness - generating fair data from biased data - is a
much less-explored concept in the context of generative models. A few
solutions to this problem such as FairGAN [38] and DECAF [33] have
been proposed based on GANs to ensure fairness in the downstream
tasks. A recent study shows that existing GAN techniques amplify the
bias present in the training data resulting in more biased data in the
target [14] including differential privacy generation schemes. There-
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fore, protected groups or people with certain sensitive or protected
characteristics like ethnicity, gender, or religion [4], can have biased
treatments in downstream models. As a result, safeguarding against
discrimination or unfavorable outcomes a person’s protected qualities
[25] has become more crucial in ML.

Motivation. Altering training with an in-process fairness objective
may disturb the quality-fairness tradeoff in Data Generation Process
(DGP). Additionally, state-of-the-art fair generative models [38, 33]
operate on pixel (for image) or attributes (for categorical and con-
tinuous features in tabular) and thus are highly dependent on the
underlying datatypes (or syntax). Modeling these features in the high-
dimensional space requires complex model architectures compatible
with the underlying data types. This demands high computational
resources for the generative models, which reduces the accessibility
of these models to the general research community.

Research gap. There is a lack of study in learning fair DGMs to
reach an optimal point between accessibility, fairness, quality, and
flexibility (fine-tuning to various architectures, tasks, and fairness
measures).
To this end, we propose Fair Latent Deep Generative Models

(FLDGMs), both for GANs and DMs. Our FLDGMs are syntax-
agnostic and stable and operate on low-dimensional continuous latent
space. First, our approach starts with learning a fair compression
using Variational AutoEncoders that enable fast sampling from the
input domain and encourage quality in the target as the DGMs in the
subsequent stage can focus on optimizing this compressed dimension.
Second, the fair latent vectors can be used for various generative
models (such as many versions of GANs and DMs) and applications
independent of data-specific architectures, which makes the approach
more generalizable. Third, it can be extended to impose various fair-
ness constraints in the synthetic data given the pre-trained Variational
AutoEncoders for the corresponding fairness measures, boosting flex-
ibility. Fourth, since the generation is performed by either GANS
or DMs, it can produce high-quality samples which contradict the
approach described in [20]. Finally, the transformation from the gen-
erated fair latent space to the fair data space can be done in a single
pass. To the best of our knowledge, there are no studies involving the
capabilities mentioned above in fair data generation schemes.

Contributions. Our key contributions are four-fold: (i) We propose
a novel formulation of a fair latent generative framework common to
both GANs and Diffusion models; (ii) In contrast to previous works
[38, 39, 21] which generate both fair and accurate synthetic data
simultaneously, FLDGMs do not require a delicate weighting factor
of generation quality and fairness penalty. Therefore, our approach
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requires zero regularization of the latent space and ensures high-
fidelity reconstructions and guarantees global convergence; (iii) The
FLDGMs can be generalizable to data of any category, reducing the
data pre-processing and modeling overhead in DGMs; (iv) Lastly, we
conducted extensive experiments on tabular and image domains for
various generative frameworks and compared the performance to the
state-of-the-art in terms of fairness and data utility. Moreover, we also
analyze the fidelity, diversity, and authenticity [1] of our proposed
FLDGMs. The code and supplementary materials can be found at
https://github.com/fahim-sikder/FLDGM.

2 Preliminaries

2.1 Algorithmic Fairness

This section defines disparate treatment and disparate impact measures
of algorithmic fairness. Given a biased dataset D = {X,S, Y },
where X ∈ X , S ∈ S, and Y ∈ Y respectively denote the set of
non-sensitive, sensitive and target attributes. The features S and Y
are categorical.

Definition 1: Fairness Through Unawareness (FTU) [11] - Let
h be a prediction function, h : X → Ŷ , and Ŷ be the prediction
outcome. The function h satisfies FTU if the sensitive attributes S are
not explicitly used by h to obtain Ŷ .
The above definition controls disparate treatment [41, 3], but it

is susceptible to disparate impact [7], which is caused by the proxy
features1 that are highly correlated with S. Therefore, a more vi-
tal measure is needed to control indirect discrimination, which is
achieved by Demographic Parity (DP) or statistical parity.

Definition 2: Demographic Parity (DP) [3] - Suppose we have
a function f : X → Ŷ , Ŷ = {0, 1} for binary classification,
and let S splits X into a majority set M and a minority set
M′ (X =M∪M′), the function f satisfies DP if P [f(x) = 1 |
x ∈M] = P [f(x) = 1 | x ∈M′], where x denotes an instance of
X and P [.] denotes the probability of an instance. We assume the
protected attribute is binary for notational convenience and can be
extended to non-binary settings as well.

2.2 Fairness Objective

Most of the state-of-the-art techniques for fairness penalty compu-
tations depend on mutual information-related measures [31, 28, 26].
These information-theoretic methods achieve fairness at the expense
of data quality and utility. Another line of research is based on adver-
sarial approaches [23, 8] but it suffers from training instability since
an adversary cannot be completely trained until convergence in most
situations [26]. To tackle these issues, a distance correlation measure
has been introduced into the literature [18, 13]. The dependence be-
tween two random variables Z1 and Z2 can be reduced by minimizing
the distance correlation, V2 between them as follows:

V2(z1, z2) =

∫
Z1

∫
Z2

| p(z1, z2)− p(z1)p(z2) |2 dz1 dz2. (1)

2.3 Generative Models

The models in synthetic data generation are mostly based on GANs
and DMs. In the proposed work, we use two GAN architectures,
namely Least Square GAN [24] and Wasserstein GAN with Gradient

1 features that are highly correlated with sensitive attributes

Penalty (WGAN-GP) [12] as these are the best among the state-of-
the-art GAN-based generation methods. For notational convenience
(in this section), letX be the real data and x be an instance ofX .

LSGAN. The min-max optimization of LSGAN can be defined as
[24]:

min
θD

VLSGAN (D) =− 1

2
× Ex∼px(X)

[
(D(x)− b)2

]
+

1

2
× Eξ∼pξ(ξ)[(D(G(ξ))− a)2],

(2)

min
θG

VLSGAN (G) =
1

2
× Eξ∼pξ(ξ)[(D(G(ξ))− c)2], (3)

where a and b are labels for fake data and real data respectively
and c denotes the value that the generator wants D to believe for fake
data. Also, ξ is from a uniform or Gaussian distribution pξ(ξ) that
maps ξ to the real data space through G(ξ, θG).

WGAN-GP. The objective function for WGAN-GP [12] is:

L = E
x̃∼pg

[D(x̃)]− E
x∼px

[D(x)]

︸ ︷︷ ︸
Original critic loss

+λ E
x̂∼px̂

[(‖∇x̂D(x̂)‖2 − 1
)2]

,

︸ ︷︷ ︸
gradient penalty

(4)
The px̂ denotes sampling uniformly between distribution px and the
generator distribution pg . The penalty coefficient λ = 10 is set ac-
cording to [2].

Diffusion-based generation. A Diffusion Model (DM) [15] con-
sists of a forward process, in which the data is progressively noised,
and a reverse process is applied, in which noise is transformed back
into data from the target distribution.
The sampling chain transitions in the forward process can be set

to conditional Gaussians and the Markov assumption of the forward
process can be defined as [15]:

q(X1:TX0) :=
T∏

t=1

q(XtXt−1)

:=
T∏

t=1

N (Xt;
√

1− βtXt−1, βtI),

(5)

where β1, . . . , βT is the variance schedule. During the reverse pro-
cess, the models learn to generate new data starting with the Gaussian
noise p(XT ) := N (XT ,0, I), to the joint distribution pθ(X0:T ) as
[15]:

pθ(X0:T ) :=p(XT )
T∏

t=1

pθ(Xt−1Xt)

:= p(XT )
T∏

t=1

N (Xt−1;μθ(Xt, t),Σθ(Xt, t)),

(6)

where the time-dependent parameters of the Gaussian transitions are
learned.

3 Synthetic Data Fairness

Synthetic data fairness means generating fair synthetic data from
biased data so that the downstream models trained on fair synthetic
data will have fair predictions in real data 2. This section forward,

2 We assume that the model does not exhibit explicit biases and the biased
outcome is caused only by the biases in the training data.
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we separate S from X by X̄ = X \ S and we write X ←− X̄ for
simplicity. Also, we consider Y ∈ X if not explicitly defined.
Given a biased dataset D = {X,S}, where X ∈ X and S ∈ S

respectively denote the set of non-sensitive and sensitive attributes.
We define a Fair Data Generation Process (FDGP) as follows:

Definition 3: Fair Data Generation Process (FDGP) - Let G be
a generative model and U(S, Y ) (either FTU or DP) be a definition
of algorithmic fairness. The DGP is said to be fair if the G, once
optimized, learned to obtain a deterministic transformation from Mul-
tivariate Normal Distribution (MVN) to real data distribution that is
maximally discriminative with respect to any downstream predictions
but invariant to S, evaluated by U(S, Y ).

Definition 4: Synthetic Data Fairness Problem (SDFP) - The
Synthetic Data Fairness problem is to generate fair data D′ from
biased data D through a Fair Data Generation Process (FDGP).
In summary, we learn to generate a distribution p(D′) from p(D)

by removing the direct and indirect effects of malignant feature S
(including proxy attributes), so that the p(D′) can be used for any
downstream fair (U(S, Y ) - fair) prediction tasks.

4 Fair Latent Deep Generative Models (FLDGMs)

In our proposed FLDGMs, the notion of FDGP is achieved by apply-
ing a sequence of operations in the biased dataD, which transforms
the distribution p(D) to p(D′). This involves separating fairness op-
timization from data generation while maintaining quality, fairness,
and diversity in the target, with the sub-goal of syntax and model-
agnostic architectures. The generative models in FLDGMs operate on
a comparatively lower dimensional space than that of real data. The
framework of FLDGMs can thus be divided into a sequence of three
stages:

1. Compressing the real data D into a fair representation retaining all
the necessary information for any target tasks, called fair abstract
compression. The output of this stage is low-dimensional fair latent
continuous vectors without having any malignant information about
sensitive features;

2. Fair latent vector generation, where the generative models are
trained to generate high-quality fair latent vectors without focusing
on syntax-related information;

3. A high fidelity reconstruction, where the dataD′ is reconstructed
from the generated fair latent vectors in a single pass.

An outline of our proposed work is given in Figure 1.

4.1 Fair Abstract Compression

Removing undesired variations from data can be considered a general
compression model which relies on two sources: a sensitive variable
S, which denotes the nuisance we want to remove, and a continuous
latent vector Z, which models all the remaining information from
input. This fair abstract compression stage can use any of the state-
of-the-art fair representation learning methods [42, 8, 29, 18, 23, 13]
that consist of an autoencoder trained for the combination of fairness
loss and reconstruction loss. The choice of fairness objective in this
step depends on different target fairness constraints. This ensures that
the fairness optimization has a clear boundary on the attribute space,
which is essential as fairness constraints are mostly defined on the
independence criteria of attributes.
Formally, given an input instance {(xi, si)}Ni=1, where N is the

number of instances in the data, the encoder E in the fair abstract
compression stage encodes {(xi, si)}Ni=1 into a continuous latent

Figure 1: The proposed FLDGM architecture.

space z ∈ Z, where z = E(xi, si). This latent representation Z
factors out all the undesired variations in the data about s ∈ S ∈ S
using the fairness penalty computed using the distance correlation in
Eq. (1) and captures the remaining information for downstream tasks.
The decoder D associated with the autoencoder is now responsible
for reconstructing the original data points from the fair latent space,
resulting in D(z) = D(E((xi, si))). The fair compression process
can be formally defined by :

Encode : EφE (Z|X,S);Decode : DφD (X ′|Z, S)), (7)

where φ is the parameter for the autoencoder and X ∼ X ′. A
multivariate Gaussian has been used for posterior EφE (Z|X,S) =
NφE (Z;μ, σ), and a standard multivariate Gaussian N (0, I) for
p(Z).

Therefore, the whole process of the fair abstract compression stage
can be defined as a combination of reconstruction loss and fairness
loss (from Eq. (1)) [18]:

max
φEφD

{log pφD(x|s) − αV2
φ(z, s)}, (8)

where V2
φ(z, s) is the required independence between the encoded

latent spaceZ and sensitive attributes S andα is a hyperparameter. We
analyze the performance of different values of α, α ∈ {1, 2, ..., 10}
on fairness and utility and set α = 7 for the entire training as it
balances the fairness-quality tradeoff as shown in Appendix B.

4.2 Fair Latent Vector Generation

Now, we are attributed with a syntax-agnostic (data type free), fair,
and continuous low-dimensional space. Thus, generative frameworks
G, such as GANs and DMs, can effectively focus on generating
high-quality fair latent vectors without having to deal with high-
dimensional feature types (such as categorical features in tabular data
and pixels in images). In this work, we use generative models based on
GANs and DMs for latent space generation as mentioned in Section
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2.3. This can be done by modifying the equations 2-5 by replacing X
with our fair latent space Z (and thus by x with z). The only differ-
ence is that the real data used to train LSGAN, WGAN-GP, and DM
is now the encoded fair latent space Z.

Let Z′ be a latent space generated by any of the generative models
(LSGAN, WGAN-GP, and DM) then Z′ ∼ Z for a well-optimized
generative model G.

Theorem 1 (Convergence guarantee). Assume that (i) the data gen-
eration is Markov compatible with a pre-trained autoencoder, which
is optimized for a combination of fairness loss and reconstruction
loss, (ii) the neural networks involved in DGMs have enough capacity,
and (iii) the training of all the components of the DGMs is iterative
until optimality, then for a well-optimized FLDGM, the generated
fair latent distribution pZ′ by the generator network G in G always
converges to the ground-truth fair latent distribution pZ (proof in
Appendix C).

Theorem 2 (Fairness guarantee). For a well-optimized generative
model G in FLDGM, the generated fair latent vector Z′ is U(S, Y )
- fair, given the corresponding pre-trained autoencoder (proof in
Appendix C).

4.3 High Fidelity Reconstruction

In this stage, we pass the generated fair latent vectors Z′ to the pre-
trained decoder D to reconstruct the features from the latent vectors
in a single pass. The reconstruction model parameterized by φD can
then be represented as:

DφD (X ′|Z′, S), X ′ ∼ X (9)

Summary. The whole process of fair latent deep generative modeling
can be formally defined as:

DφD (X ′|Z′, S) = DφD (X ′|Gθ(ξ), Z)

= DφD (X ′| (GθG(ξ)| (EφE (Z|X,S)︸ ︷︷ ︸
Fair−abstract−compression

))

︸ ︷︷ ︸
Fair−latent−vector−generation

, S)

︸ ︷︷ ︸
High−fidelity−reconstruction

,

(10)

where we denote Gθ for any generative model (GAN and DM in our
case) and GθG is the corresponding generator network of Gθ . Note
that, we use φ for denoting autoencoder parameters and θ for the
generative modeling with an appropriate subscript.

Remark. Given corresponding pre-trained autoencoders, various
datasets can be generated based on different fairness constraints and
output tasks. This does not add any computational overhead to the
generative modeling as fairness is enforced in a separate step.

The term classification fairness [38] or downstream fairness means
that any downstream classifiers trained on generated fair data should
not discriminate when tested on real data.

Theorem 3 (Classification fairness [38] guarantee). Any optimal
downstream classifiers M (without any explicit biases) trained on D′

will have fair predictions on D under U(S, Y ) (proof in Appendix
C).

5 Experiments

5.1 Datasets

We performed experiments on three benchmark datasets, Adult In-
come3(table), celebA [19], and Color MNIST[17] (image), where the
3 https://archive.ics.uci.edu/ml/datasets/adult

sensitive feature S is significantly correlated with the target label and
thus the proper removal of S could be challenging.

Adult Income. The Adult Income is a tabular dataset contain-
ing over 65,000 instances with 11 attributes, such as age, education,
gender, and income, among others. We treat gender as the sensitive at-
tribute (as there is a known bias between gender and income) and use
income as the binary output label representing whether a person earns
over 50K or not (More details on the analysis of fairness Appendix
D).

Color MNIST. The color MNIST is an image database containing
handwritten digits and colors for the intrinsic and biased features.
Following previous studies, the color MNIST used in our experimental
analysis is based on [17]. It is designed with seven standard deviations
(SD) (equally spaced between 0.02 and 0.05): the lower the value, the
more difficult it is for the model to perform the task since the model
can fit the training set by recognizing colors instead of shapes.

CelebA. The CelebA [19] is a large-scale face attributes collection
with over 200K celebrity photos with 40 attribute annotations. The
photos in this collection span a wide range of pose variants as well as
background clutter.

5.2 Evaluation metrics

We evaluate the quality and fairness of our proposed models using the
following measures:

1. Data utility - We use precision, recall, and AUROC for evaluating
data utility [9, 16, 32]. We train a Random Forest (RF) classifier
on synthetic data and test it on real data for downstream prediction
and compare it to the state-of-the-art.

2. Sample-level metric - We perform sample-level metrics analysis
proposed in [1] to measure the fidelity, diversity, and generalization
of synthetic data generated by our proposed models.

3. Fairness - We use both FTU and DP (Section 2.1) for analyzing
downstream fairness using a Random Forest classifier.

Furthermore, we performed explainability [22] and bias amplifica-
tion [35] analysis to substantiate our study. We generated synthetic
data using our generative models WGAN-GP, LSGAN, and DM on
the datasets mentioned above and computed the metrics by taking
an average of over 10 repetitive runs. We have the following vari-
ants: FLD-WGAN-GP, FLD-LSGAN, and FLD-DM each with FTU
and DP for the fairness definitions in U(S,Y). The neural network
architectures and implementation details are given in Appendix E.

Competing Methods. The methods we benchmark against for
Adult Income data are FairGAN and DECAF (as these models are
designed for tabular data). Also, we compare the results of WGAN-GP
without fairness to analyze the importance of FDGP. We follow the
results from [33]4 as it is difficult to reproduce the results of DECAF
as studied in [34]. Additionally, for Color MNIST and CelebA, we
performed visualization analysis for verifying the utility, fairness, and
quality of our proposed models.

6 Results

6.1 Data Utility and Fairness

6.1.1 Adult Income

We list the utility and fairness measures in Table 1. The precision
of our proposed GAN and DM models is far better than FairGAN,

4 The results are taken from the paper directly
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GAN, and WGAN-GP, whereas we obtain almost the same score with
DECAF. We improve all the state-of-the-art methods in terms of recall
score. The AUROC score of our FLDGM models is better (around 10
percent improvement) compared to the corresponding fair generation
methods. Note that DECAF-ND is simply a causal GAN without
any fairness optimization. In summary, our FLDGMs achieve a good
balance between data quality and fairness compared to state-of-the-art
fair generation methods in Adult income data.

6.1.2 Color MNIST

We performed visualization analysis on Color MNIST data. Following
[18], we set color as the sensitive attribute, and the generated images
are de-correlated from color. Then, we control the color intensity to
generate digits with a single color, meaning that the color is disen-
tangled from the digits (this is done in the fair abstract compression
stage). By changing the value of color intensity, the generated digits
can be either blue, green, or red with approximately the same digit
style (Figure 2). Note that, digit generation with fairness does not
degrade the image quality, since the generative models in FLDGMs
could focus only on image quality in the DGP.

Figure 2: Generated digits with similar styles, color as a sensitive
attribute.

(a) ’Gender’ as the sensitive attribute

(b) ’Female’ as the sensitive sub-group

(c) ’Male’ as the sensitive sub-group

Figure 3: PCA modes of generated faces

To verify the quality and fairness of downstream tasks, we train
a classifier on the generated digits and tested it on real data, that
contains various color biases (by changing the Standard Deviation
(SD)) (Table 2.). We get an accuracy of 0.951 for color digit classifi-
cation, whereas the accuracy of the classifier trained on real data is
0.931. This implies that the proposed FLDGMs helped to improve the
classification performance of digit prediction.

6.1.3 CelebA

For the visualization analysis, we focus on the target attribute ’hair
color’ and sensitive attribute ’gender’ with “Male” and “female” as
sub-groups. We used the same generative model architecture as we
used for CMNIST and Adult Income as it operates on the latent vector.
We set the training for 10K epochs as the dataset is large and the
model converged at 3000 epochs. We consider three combinations {
hair color, gender}, { hair color, male}, and { hair color, female} to
see how image generation is varied under different sensitive groups
and sub-groups. It is interesting to see that when choosing { hair color,
gender}, the DP computed between male and female is zero for the
prediction. Also, when reducing the correlation between Z and ’male’,
all the images generated are females and vice versa and thus it helps
to generate desired fairness distributions with appropriate sensitive
features (Figure 3).

6.2 Analysis of Density, Coverage, and Accesibility

Additionally, we analyzed the quality of our proposed models in Table
3 using density and coverage metrics [27], and accessibility using the
number of parameters used by the models. The reduced parameters
mean we need less memory to load these models, increasing acces-
sibility. Note that our proposed models achieve a good balance of
density, coverage, and accessibility (measured in no.of parameters) in
all three datasets from tabular and image domains. The models based
on diffusion achieve better density and coverage as diffusion models
are superior in generation compared to GAN-based schemes.

6.3 Sample-level Metric Analysis

Motivated by a recent study [1] on evaluating the faithfulness of
synthetic data, we performed sample-level metrics analysis on our
proposed variants. This is to measure the quality of synthetic data
generation in terms of fidelity, diversity, and authenticity. The results
are given in Figure 4. Note that, our proposed models are highly
authentic as per [1], which shows the significance of our FLDGMs.

Figure 4: Sample level metrics analysis

6.4 Data Leakage Analysis

To evaluate the bias amplification in terms of data leakage, λD and
model leakage, λM [35] of our proposed model, we train an attacker
(which is a ’gender’ classifier on Adult Income data) on the ground
truth labels and model predictions by a Random Forest classifier. The
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Data Quality Fairness

Method Precision (↑) Recall (↑) AUROC (↑) FTU (↓) DP (↓)
Real data 0.920 ± 0.006 0.936 ± 0.008 0.807 ± 0.004 0.116 ± 0.028 0.180 ± 0.010
GAN 0.607 ± 0.080 0.439 ± 0.037 0.567 ± 0.132 0.023 ± 0.010 0.089 ± 0.008
WGAN-GP 0.683 ± 0.015 0.914 ± 0.005 0.798 ± 0.009 0.120 ± 0.014 0.189 ± 0.024
FairGAN 0.681 ± 0.023 0.814 ± 0.079 0.766 ± 0.029 0.009 ± 0.002 0.097 ± 0.018
DECAF-ND 0.780 ± 0.023 0.920 ± 0.045 0.781 ± 0.007 0.152 ± 0.013 0.198 ± 0.013
DECAF-FTU 0.763 ± 0.033 0.925 ± 0.040 0.765 ± 0.010 0.004 ± 0.004 0.054 ± 0.005
DECAF-CF 0.743 ± 0.022 0.875 ± 0.038 0.769 ± 0.004 0.003 ± 0.006 0.039 ± 0.011
DECAF-DP 0.781 ± 0.018 0.881 ± 0.050 0.672 ± 0.014 0.001 ± 0.002 0.001 ± 0.001
FLD-LSGAN-FTU (ours) 0.762 ± 0.002 0.998 ± 0.023 0.762 ± 0.012 0.002 ± 0.001 0.000 ± 0.001

FL-LSGAN-DP (ours) 0.763 ± 0.001 0.941 ± 0.002 0.771 ± 0.010 0.000 ± 0.001 0.000 ± 0.000

FL-WGAN-GP-FTU (ours) 0.772 ± 0.034 0.918 ± 0.001 0.763 ± 0.023 0.001 ± 0.001 0.000 ± 0.001

FL-WGAN-GP-DP (ours) 0.782 ± 0.001 0.951 ± 0.001 0.762 ± 0.013 0.000 ± 0.000 0.000 ± 0.000

FL-DM-FTU (ours) 0.791 ± 0.011 0.912 ± 0.002 0.795 ± 0.001 0.000 ± 0.000 0.001 ± 0.000
FL-DM-DP (ours) 0.786 ± 0.002 0.905 ± 0.001 0.787 ± 0.011 0.000 ± 0.001 0.000 ± 0.001

Table 1: Data quality and fairness analysis of the proposed FLDGMs with real data as a reference.

SD=0.020 SD=0.025 SD=0.030 SD=0.035 SD=0.040 SD=0.045 SD=0.050

(alpha=0) .476± .005 .576±.001 .664± .007 0.720±.010 .785± .003 0.838±0.002 .931± .001
(α=0.5) .901± .001 0.927±.003 .950± .020 0.812±.002 .950±.001 .951±.001 .951±.001

Table 2: Experiment on CMNIST data with FLDGM (α = 0.5) and no fairness (α = 0)

Datasets Models Density (↑) Coverage (↑) No.of parameters (↓)
WGAN 0.70937 0.63608 4.756M

Adult Income FLD-WGAN-GP (ours) 1.05276 0.80894 0.224M

FLD-DM (ours) 1.2640 9 0.891206 0.272M

DCGAN[30] 0.92018 0.70608 5.405M
Color MNIST FLD-WGAN-GP (ours) 1.01763 0.81290 0.224M

FLD-DM (ours) 1.19682 0.81473 0.272M

DCGAN[30] 0.92318 0.53491 6.342M
Diffusion 1.29112 0.89196 274M

CelebA FLD-WGAN-GP (ours) 1.10187 0.80537 0.224M

FLD-DM (ours) 1.29129 0.89203 0.272M

Table 3: Density, coverage, and accessibility analysis of proposed models (↑ - higher the better, ↓ - lower the better, and NA-not available)

λM trained on different data is given in Table 4. It shows that the
leakage is controlled in data generation by all the proposed models as
the bias amplification Δ(λM − λD) is less than 0 for all the models
with both FTU and DP as target fairness constraints.

6.5 Explainability Analysis

In order to analyze the difference in predictions of a Random Forest
classifier trained on both real data and synthetic data, generated by our
proposed model ( we consider FLD-WGAN-GP-DP), we explain the
predictions using Shapely Additive Explanation for Adult income data.
It is obvious from Figure 5 that the contribution of the feature ’sex’
is reduced, whereas the contribution of ’Relationship’, ’Educational-
Num’, and ’Hours per week’ (these are intrinsic features for income
prediction) is slightly increased.

7 Related Works

We focus on the related literature in terms of (i) non-parametric gen-
erative models and (ii) fair synthetic data generation. We refer to
Appendix F for an overview of comparing various generative models
with respect to our key areas of interest.

7.1 Non-parametric Generative Models

The state-of-the-art methods in synthetic data generation are either
based on GANs [12, 40, 37] or Variational Auto Encoders (VAE)
[36]. Recently, diffusion models have shown many improvements in
high-quality synthetic data generation, particularly in images. The
models above are well known for synthetic data generation, having
trade-offs in various properties such as quality, diversity, etc, but
unable to generate fair data (except [38] as discussed below).
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Figure 5: SHAP analysis on Adult Income

Method λM (↓) Δ(↓)
Real data 0.642 0.022
WGAN-GP 0.712 0.092
FairGAN 0.583 -0.037
FLD-LSGAN-FTU 0.535 -0.085
FLD-LSGAN-DP 0.503 -0.117
FLD-WGAN-GP-FTU 0.505 -0.115
FLD-WGAN-GP-DP 0.502 -0.118
FLD-DM-FTU 0.500 -0.120

FLD-DM-DP 0.511 -0.109

Table 4: Bias amplification by models trained on different data. The
reference dataset leakage is 0.620 with an approximate F1 score of
0.86.

7.2 Fair Synthetic Data Generation

The methods under this category [38, 6] range from training genera-
tive models with a combination of generative loss and fairness loss,
adversarial training, and post-processing schemes.
In FairGAN [38], an adversarial approach is proposed to predict

the sensitive attributes from the generated data. This encourages the
generator to produce data that is independent of the sensitive features.
One main problem with this approach is that the adversary cannot
be trained until convergence in every epoch which in turn degrades
the performance. Also, this method is designed for binary-sensitive
attributes. A fair data generation method by giving access to a small
reference fair data is introduced in [6]. The motivation of this work is
not aligned with downstream fairness and explicit notions of fairness
[33]. A post-processing de-biasing method based on causal knowledge
is proposed in [33], where the de-biasing was done at the inference
time after the sequential generation of features by individual genera-
tors. This approach is designed for tabular data and is strictly based
on the causal relationship between features. The computational com-
plexity of this approach is very high, though the de-biasing is flexible
to various fairness constraints at the target domain. Another approach
based on VAE is proposed in [21], where fairness is introduced by
an additional regularization based on Maximum Mean Discrepancy
(MMD) to get complete independence between data and sensitive
attributes. This method imposes additional overhead for optimizing
the MMD in the DGP.

8 Disadvantages and Societal Implications

Disadvantages. The fairness and quality of synthetic data generated
by our proposed Fair Latent Deep Generative Models are limited
by the performance of the Fair abstract compression stage. Thus the
choice of auto-encoder architecture and corresponding fair compres-
sion should be designed in a way to balance the tradeoffs between
quality and fairness. However, we have succeeded in reducing the com-
putational overhead of syntax-specific generation (high-dimensional)
and prevented quality loss when optimizing for fairness in the DGP,
with very high flexibility in fine-tuning to various architectures and
tasks, which is a great improvement in this context.

Societal Implications. Adversarial attacks on GANs can reveal
training instances [5], which is a hot topic of research. However, the
extent to which it applies to diffusion models is under-explored. More-
over, generative models tend to exacerbate biases that are present in
the training data [14]. In our proposed approach, the training instances
are continuous fair latent vectors that do not directly reveal personal
information in adversarial attacks (as it is encoded). Therefore, in
an environment where privacy is of great concern, it is advisable to
have an authentic human-in-the-loop who keeps the details of the au-
toencoder and shares other components for downstream applications,
thereby having proper control over data privacy. For the second prob-
lem, de-biasing data happens in the fair compression stage, thereby
the subsequent generative modeling could not access the bias infor-
mation in the data, which greatly controls the bias amplification in
downstream models.

9 Conclusion

We have proposed Fair Latent Deep Generative Models (FLDGMs), a
syntax-agnostic generative framework that enables an efficient way
to significantly improve both the fairness and quality of synthetic
data generation using Diffusion models and Generative Adversarial
Networks on image and tabular data. Based on our experimental
analysis and evaluation, we demonstrated favorable results in terms
of data quality, authenticity, accessibility, and fairness compared to
state-of-the-art schemes across a wide range of proposed models in
the absence of task-specific architectures.

Future Directions. One interesting future research direction could
be to extend this framework for de-biasing hate speech detection and
replace the biased contents in the tweets or speech with another, that
could be generated by any underlying Natural Language Generation
(NLG) methods. This area has not been explored but is very important
as it has applications in text summarization, question generation, hate
speech detection and removal, and text-to-image generation. Also, in
contexts, where multi-modal data contains various biases, it could be
interesting to first learn a common representation without biases and
then build downstream models on top of it.
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