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• We use two benhmarking healtcare datasets (MIMIC-
III & MIMIC-IV).

• We use Gender as the sensitive attribute.
• Visual Evaluation

• PCA & t-SNE Plots
• Empirical Evaluation

• Fidelity: LDS, Jensen-Shannon Divergence
(JSD), α-precision [5]

• Diversity: β-recall [5] 
• Check mode collapse: Coverage [5]
• Predictive Analysis: LPS, +5  Steps Ahead

• Fairness Evaluation
• Demographic Parity
• Predictive Parity

• Privacy Evaluation
• AUROC
• LDS
• Authenticity [5]

• Long-sequenced time-series data gives more
information than the short-sequenced data.

• Most time-series generative models are Generative
Adversarial Networks (GAN) [1, 3] and training GAN is
challenging as well as it prones to mode-collapse
problem.

• Transformers architecture can capture long-term
dependencies.
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Our proposed model works in the following steps:
• Diffusion Forward step: We add noise to the data

until the data become pure Gaussian noise.
• Diffusion Backward step: We use a Transformer-

Encoder [4] based neural network to denoise the data
and approximate the original data distribution.

• Adding fairness penalty: We add fairness penalty
to the diffusion backward step to ensure fair data
generation.

• Train in DP manner: We also train the whole
process in differential privacy (DP) manner to ensure
private data generation.
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This project is part of an ongoing PhD study. In the PhD
study, we aim to propose methods for generating high-
quality and long-sequenced time series data and
maintaining privacy and fairness in the model. Also, we
aim to propose methods to evaluate the quality of
synthetic long-sequence time-series data.

• Our model is capable of generating long-sequenced
longitudinal healtcare records.

• Generates fair and private data.
• We add fariness penalty to ensure fair data generation.
• Usage of Diffusion and Transformers overcome the

mode-collapse problem of generative models.

• Private synthetic healthcare data can improve the
quality of reasearch and development without
compromising patient’s privacy.

• Fair synthetic healthcare data can mittigate the bias
issue in the real data.
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